Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38160852

RESUMO

BACKGROUND: Psychiatric disorders, such as schizophrenia, are complex and challenging to study, partly due to the lack of suitable animal models. However, the absence of the Slc10a4 gene, which codes for a monoaminergic and cholinergic associated vesicular transporter protein, in knockout mice (Slc10a4-/-), leads to the accumulation of extracellular dopamine. A major challenge for studying schizophrenia is the lack of suitable animal models that accurately represent the disorder. We sought to overcome this challenge by using Slc10a4-/- mice as a potential model, considering their altered dopamine levels. This makes them a potential animal model for schizophrenia, a disorder known to be associated with altered dopamine signaling in the brain. METHODS: The locomotion, auditory sensory filtering and prepulse inhibition (PPI) of Slc10a4-/- mice were quantified and compared to wildtype (WT) littermates. Intrahippocampal electrodes were used to record auditory event-related potentials (aERPs) for quantifying sensory filtering in response to paired-clicks. The channel above aERPs phase reversal was chosen for reliably comparing results between animals, and aERPs amplitude and latency of click responses were quantified. WT and Slc10a4-/- mice were also administered subanesthetic doses of ketamine to provoke psychomimetic behavior. RESULTS: Baseline locomotion during auditory stimulation was similar between Slc10a4-/- mice and WT littermates. In WT animals, normal auditory processing was observed after i.p saline injections, and it was maintained under the influence of 5 mg/kg ketamine, but disrupted by 20 mg/kg ketamine. On the other hand, Slc10a4-/- mice did not show significant differences between N40 S1 and S2 amplitude responses in saline or low dose ketamine treatment. Auditory gating was considered preserved since the second N40 peak was consistently suppressed, but with increased latency. The P80 component showed higher amplitude, with shorter S2 latency under saline and 5 mg/kg ketamine treatment in Slc10a4-/- mice, which was not observed in WT littermates. Prepulse inhibition was also decreased in Slc10a4-/- mice when the longer interstimulus interval of 100 ms was applied, compared to WT littermates. CONCLUSION: The Slc10a4-/- mice responses indicate that cholinergic and monoaminergic systems participate in the PPI magnitude, in the temporal coding (response latency) of the auditory sensory gating component N40, and in the amplitude of aERPs P80 component. These results suggest that Slc10a4-/- mice can be considered as potential models for neuropsychiatric conditions.


Assuntos
Dopamina , Ketamina , Animais , Humanos , Camundongos , Estimulação Acústica/métodos , Percepção Auditiva , Colinérgicos , Dopamina/fisiologia , Potenciais Evocados Auditivos/fisiologia , Filtro Sensorial
2.
J Psychopharmacol ; 37(11): 1116-1131, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37837354

RESUMO

Tinnitus is a phantom sound perception affecting both auditory and limbic structures. The mechanisms of tinnitus remain unclear and it is debatable whether tinnitus alters attention to sound and the ability to inhibit repetitive sounds, a phenomenon also known as auditory gating. Here we investigate if noise exposure interferes with auditory gating and whether natural extracts of cannabis or nicotine could improve auditory pre-attentional processing in noise-exposed mice. We used 22 male C57BL/6J mice divided into noise-exposed (exposed to a 9-11 kHz narrow band noise for 1 h) and sham (no sound during noise exposure) groups. Hearing thresholds were measured using auditory brainstem responses, and tinnitus-like behavior was assessed using Gap prepulse inhibition of acoustic startle. After noise exposure, mice were implanted with multi-electrodes in the dorsal hippocampus to assess auditory event-related potentials in response to paired clicks. The results showed that mice with tinnitus-like behavior displayed auditory gating of repetitive clicks, but with larger amplitudes and longer latencies of the N40 component of the aERP waveform. The combination of cannabis extract and nicotine improved the auditory gating ratio in noise-exposed mice without permanent hearing threshold shifts. Lastly, the longer latency of the N40 component appears due to an increased sensitivity to cannabis extract in noise-exposed mice compared to sham mice. The study suggests that the altered central plasticity in tinnitus is more sensitive to the combined actions on the cholinergic and the endocannabinoid systems. Overall, the findings contribute to a better understanding of pharmacological modulation of auditory sensory gating.


Assuntos
Cannabis , Zumbido , Camundongos , Masculino , Animais , Zumbido/tratamento farmacológico , Nicotina/farmacologia , Estimulação Acústica , Camundongos Endogâmicos C57BL , Filtro Sensorial
3.
Front Aging Neurosci ; 15: 1152497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213542

RESUMO

Introduction: Loud noise-exposure can generate noise-induced tinnitus in both humans and animals. Imaging and in vivo studies show that noise exposure affects the auditory cortex; however, cellular mechanisms of tinnitus generation are unclear. Methods: Here we compare membrane properties of layer 5 (L5) pyramidal cells (PCs) and Martinotti cells expressing the cholinergic receptor nicotinic alpha 2 subunit gene (Chrna2) of the primary auditory cortex (A1) from control and noise-exposed (4-18 kHz, 90 dB, 1.5 h, followed by 1.5 h silence) 5-8 week old mice. PCs were furthermore classified in type A or type B based on electrophysiological membrane properties, and a logistic regression model predicting that afterhyperpolarization (AHP) and afterdepolarization (ADP) are sufficient to predict cell type, and these features are preserved after noise trauma. Results: One week after a loud noise-exposure no passive membrane properties of type A or B PCs were altered but principal component analysis showed greater separation between type A PCs from control and noise-exposed mice. When comparing individual firing properties, noise exposure differentially affected type A and B PC firing frequency in response to depolarizing current steps. Specifically, type A PCs decreased initial firing frequency in response to +200 pA steps (p = 0.020) as well as decreased steady state firing frequency (p = 0.050) while type B PCs, on the contrary, significantly increased steady state firing frequency (p = 0.048) in response to a + 150 pA step 1 week after noise exposure. In addition, L5 Martinotti cells showed a more hyperpolarized resting membrane potential (p = 0.04), higher rheobase (p = 0.008) and an increased initial (p = 8.5 × 10-5) and steady state firing frequency (p = 6.3 × 10-5) in slices from noise-exposed mice compared to control. Discussion: These results show that loud noise can cause distinct effects on type A and B L5 PCs and inhibitory Martinotti cells of the primary auditory cortex 1 week following noise exposure. As the L5 comprises PCs that send feedback to other areas, loud noise exposure appears to alter levels of activity of the descending and contralateral auditory system.

4.
BMC Biol ; 20(1): 102, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35550106

RESUMO

BACKGROUND: The dorsal cochlear nucleus (DCN) is a region known to integrate somatosensory and auditory inputs and is identified as a potential key structure in the generation of phantom sound perception, especially noise-induced tinnitus. Yet, how altered homeostatic plasticity of the DCN induces and maintains the sensation of tinnitus is not clear. Here, we chemogenetically decrease activity of a subgroup of DCN neurons, Ca2+/Calmodulin kinase 2 α (CaMKII α)-positive DCN neurons, using Gi-coupled human M4 Designer Receptors Exclusively Activated by Designer Drugs (hM4Di DREADDs), to investigate their role in noise-induced tinnitus. RESULTS: Mice were exposed to loud noise (9-11kHz, 90dBSPL, 1h, followed by 2h of silence), and auditory brainstem responses (ABRs) and gap prepulse inhibition of acoustic startle (GPIAS) were recorded 2 days before and 2 weeks after noise exposure to identify animals with a significantly decreased inhibition of startle, indicating tinnitus but without permanent hearing loss. Neuronal activity of CaMKII α+ neurons expressing hM4Di in the DCN was lowered by administration of clozapine-N-oxide (CNO). We found that acutely decreasing firing rate of CaMKII α+ DCN units decrease tinnitus-like responses (p = 3e -3, n = 11 mice), compared to the control group that showed no improvement in GPIAS (control virus; CaMKII α-YFP + CNO, p = 0.696, n = 7 mice). Extracellular recordings confirmed CNO to decrease unit firing frequency of CaMKII α-hM4Di+ mice and alter best frequency and tuning width of response to sound. However, these effects were not seen if CNO had been previously administered during the noise exposure (n = 6 experimental and 6 control mice). CONCLUSION: We found that lowering DCN activity in mice displaying tinnitus-related behavior reduces tinnitus, but lowering DCN activity during noise exposure does not prevent noise-induced tinnitus. Our results suggest that CaMKII α-positive cells in the DCN are not crucial for tinnitus induction but play a significant role in maintaining tinnitus perception in mice.


Assuntos
Núcleo Coclear , Zumbido , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Núcleo Coclear/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Camundongos , Percepção , Zumbido/etiologia
5.
eNeuro ; 8(1)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33563600

RESUMO

The dorsal cochlear nucleus (DCN) is a region of particular interest for auditory and tinnitus research. However, lack of useful genetic markers for in vivo manipulations hinders elucidation of the DCN contribution to tinnitus pathophysiology. This work assesses whether adeno-associated viral vectors (AAV) containing the calcium/calmodulin-dependent protein kinase 2α (CaMKIIα) promoter and a mouse line of nicotinic acetylcholine receptor α2 subunit (Chrna2)-Cre can target specific DCN populations. We found that CaMKIIα cannot be used to target excitatory fusiform DCN neurons as labeled cells showed diverse morphology indicating they belong to different classes of DCN neurons. Light stimulation after driving Channelrhodopsin2 (ChR2) by the CaMKIIα promoter generated spikes in some units but firing rate decreased when light stimulation coincided with sound. Expression and activation of CaMKIIα-eArchaerhodopsin3.0 in the DCN produced inhibition in some units but sound-driven spikes were delayed by concomitant light stimulation. We explored the existence of Cre+ cells in the DCN of Chrna2-Cre mice by hydrogel embedding technique (CLARITY). There were almost no Cre+ cell bodies in the DCN; however, we identified profuse projections arising from the ventral cochlear nucleus (VCN). Anterograde labeling in the VCN revealed projections to the ipsilateral superior olive and contralateral medial nucleus of the trapezoid body (MNTB; bushy cells), and a second bundle terminating in the DCN, suggesting the latter to be excitatory Chrna2+ T-stellate cells. Exciting Chrna2+ cells increased DCN firing. This work shows that cortical molecular tools may be useful for manipulating the DCN especially for tinnitus studies.


Assuntos
Núcleo Coclear , Zumbido , Animais , Camundongos , Neurônios , Som , Núcleos Vestibulares
6.
Exp Neurol ; 326: 113175, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31923390

RESUMO

Salicylate intoxication is a cause of tinnitus and comorbidly associated with anxiety in humans. In a previous work, we showed that salicylate induces anxiety-like behavior and hippocampal type 2 theta oscillations (theta2) in mice. Here we investigate if the anxiogenic effect of salicylate is dependent on age and previous tinnitus experience. We also tested whether a single dose of DMT can prevent this effect. Using microwire electrode arrays, we recorded local field potential in young (4-5- month-old) and old (11-13-month-old) mice to study the electrophysiological effect of tinnitus in the ventral hippocampus (vHipp) and medial prefrontal cortex (mPFC) in an open field arena and elevated plus maze 1h after salicylate (300mg/kg) injection. We found that anxiety-like behavior and increase in theta2 oscillations (4-6 Hz), following salicylate pre-treatment, only occurs in young (normal hearing) mice. We also show that theta2 and slow gamma oscillations increase in the vHipp and mPFC in a complementary manner during anxiety tests in the presence of salicylate. Finally, we show that pre-treating mice with a single dose of the hallucinogenic 5-MeO-DMT prevents anxiety-like behavior and the increase in theta2 and slow gamma oscillations after salicylate injection in normal hearing young mice. This work further support the hypothesis that anxiety-like behavior after salicylate injection is triggered by tinnitus and require normal hearing. Moreover, our results show that hallucinogenic compounds can be effective in treating tinnitus-related anxiety.


Assuntos
Envelhecimento/psicologia , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Alucinógenos/uso terapêutico , Metoxidimetiltriptaminas/uso terapêutico , Salicilatos , Animais , Ansiedade/prevenção & controle , Comportamento Animal , Eletroencefalografia/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico , Perda Auditiva Provocada por Ruído/complicações , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microeletrodos , Atividade Motora , Córtex Pré-Frontal/fisiopatologia , Salicilatos/antagonistas & inibidores , Zumbido/induzido quimicamente , Zumbido/fisiopatologia , Zumbido/psicologia
7.
Hippocampus ; 29(12): 1224-1237, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31301163

RESUMO

The hippocampus is an extended structure displaying heterogeneous anatomical cell layers along its dorsoventral axis. It is known that dorsal and ventral regions show different integrity when it comes to functionality, innervation, gene expression, and pyramidal cell properties. Still, whether hippocampal interneurons exhibit different properties along the dorsoventral axis is not known. Here, we report electrophysiological properties of dorsal and ventral oriens lacunosum moleculare (OLM) cells from coronal sections of the Chrna2-cre mouse line. We found dorsal OLM cells to exhibit a significantly more depolarized resting membrane potential compared to ventral OLM cells, while action potential properties were similar between the two groups. We found ventral OLM cells to show a higher initial firing frequency in response to depolarizing current injections but also to exhibit a higher spike-frequency adaptation than dorsal OLM cells. Additionally, dorsal OLM cells displayed large membrane sags in response to negative current injections correlating with our results showing that dorsal OLM cells have more hyperpolarization-activated current (Ih ) compared to ventral OLM cells. Immunohistochemical examination indicates the h-current to correspond to hyperpolarization-activated cyclic nucleotide-gated subunit 2 (HCN2) channels. Computational studies suggest that Ih in OLM cells is essential for theta oscillations in hippocampal circuits, and here we found dorsal OLM cells to present a higher membrane resonance frequency than ventral OLM cells. Thus, our results highlight regional differences in membrane properties between dorsal and ventral OLM cells allowing this interneuron to differently participate in the generation of hippocampal theta rhythms depending on spatial location along the dorsoventral axis of the hippocampus.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Potenciais da Membrana/fisiologia , Receptores Nicotínicos/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos
8.
Hippocampus ; 29(1): 15-25, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30152905

RESUMO

Salicylate intoxication is a cause of tinnitus in humans and it is often used to produce tinnitus-like perception in animal models. Here, we assess whether salicylate induces anxiety-like electrophysiological and behavioral signs. Using microwire electrode arrays, we recorded local field potential in the ventral and, in some experiments dorsal hippocampus, in an open field arena 1 hr after salicylate (300 mg/kg) injection. We found that animals treated with salicylate moved dramatically less than saline treated animals. Salicylate-treated animals showed a strong 4-6 Hz (type 2) oscillation in the ventral hippocampus (with smaller peaks in dorsal hippocampus electrodes). Coherence in the 4-6 Hz-theta band was low in the ventral and dorsal hippocampus when compared to movement-related theta coherence (7-10 Hz). Moreover, movement related theta oscillation frequency decreased and its dependency on running speed was abolished. Our results suggest that salicylate-induced theta is mostly restricted to the ventral hippocampus. Slow theta has been classically associated to anxiety-like behaviors. Here, we show that salicylate application can consistently generate low frequency theta in the ventral hippocampus. Tinnitus and anxiety show strong comorbidity and the increase in ventral hippocampus low frequency theta could be part of this association.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/psicologia , Hipocampo/efeitos dos fármacos , Corrida/psicologia , Salicilatos/toxicidade , Ritmo Teta/efeitos dos fármacos , Animais , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Corrida/fisiologia , Ritmo Teta/fisiologia
9.
J Neurosci ; 37(23): 5634-5647, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483975

RESUMO

When activating muscles, motor neurons in the spinal cord also activate Renshaw cells, which provide recurrent inhibitory feedback to the motor neurons. The tight coupling with motor neurons suggests that Renshaw cells have an integral role in movement, a role that is yet to be elucidated. Here we used the selective expression of the nicotinic cholinergic receptor α2 (Chrna2) in mice to genetically target the vesicular inhibitory amino acid transporter (VIAAT) in Renshaw cells. Loss of VIAAT from Chrna2Cre -expressing Renshaw cells did not impact any aspect of drug-induced fictive locomotion in the neonatal mouse or change gait, motor coordination, or grip strength in adult mice of both sexes. However, motor neurons from neonatal mice lacking VIAAT in Renshaw cells received spontaneous inhibitory synaptic input with a reduced frequency, showed lower input resistance, and had an increased number of proprioceptive glutamatergic and calbindin-labeled putative Renshaw cell synapses on their soma and proximal dendrites. Concomitantly, Renshaw cells developed with increased excitability and a normal number of cholinergic motor neuron synapses, indicating a compensatory mechanism within the recurrent inhibitory feedback circuit. Our data suggest an integral role for Renshaw cell signaling in shaping the excitability and synaptic input to motor neurons.SIGNIFICANCE STATEMENT We here provide a deeper understanding of spinal cord circuit formation and the repercussions for the possible role for Renshaw cells in speed and force control. Our results suggest that while Renshaw cells are not directly required as an integral part of the locomotor coordination machinery, the development of their electrophysiological character is dependent on vesicular inhibitory amino acid transporter-mediated signaling. Further, Renshaw cell signaling is closely associated with the molding of motor neuron character proposing the existence of a concerted maturation process, which seems to endow this particular spinal cord circuit with the plasticity to compensate for loss of the Renshaw cell in adult circuit function.


Assuntos
Envelhecimento/fisiologia , Retroalimentação Fisiológica/fisiologia , Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Células de Renshaw/fisiologia , Transmissão Sináptica/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia
10.
PLoS Biol ; 15(2): e2001392, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28182735

RESUMO

Martinotti cells are the most prominent distal dendrite-targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control.


Assuntos
Interneurônios/metabolismo , Células Piramidais/metabolismo , Receptores Nicotínicos/metabolismo , Potenciais de Ação , Animais , Forma Celular , Feminino , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos Transgênicos , Optogenética , Fatores de Tempo
11.
Eur J Neurosci ; 41(7): 889-900, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25712471

RESUMO

Renshaw cells in the spinal cord ventral horn regulate motoneuron output through recurrent inhibition. Renshaw cells can be identified in vitro using anatomical and cellular criteria; however, their functional role in locomotion remains poorly defined because of the difficulty of functionally isolating Renshaw cells from surrounding motor circuits. Here we aimed to investigate whether the cholinergic nicotinic receptor alpha2 (Chrna2) can be used to identify Renshaw cells (RCs(α2)) in the mouse spinal cord. Immunohistochemistry and electrophysiological characterization of passive and active RCs(α2) properties confirmed that neurons genetically marked by the Chrna2-Cre mouse line together with a fluorescent reporter mouse line are Renshaw cells. Whole-cell patch-clamp recordings revealed that RCs(α2) constitute an electrophysiologically stereotyped population with a resting membrane potential of -50.5 ± 0.4 mV and an input resistance of 233.1 ± 11 MΩ. We identified a ZD7288-sensitive hyperpolarization-activated cation current (Ih) in all RCs(α2), contributing to membrane repolarization but not to the resting membrane potential in neonatal mice. Additionally, we found RCs(α2) to express small calcium-activated potassium currents (I(SK)) that, when blocked by apamin, resulted in a complete attenuation of the afterhyperpolarisation potential, increasing cellular firing frequency. We conclude that RCs(α2) can be genetically targeted through their selective Chrna2 expression and that they display currents known to modulate rebound excitation and firing frequency. The genetic identification of Renshaw cells and their electrophysiological profile is required for genetic and pharmacological manipulation as well as computational simulations with the aim to understand their functional role.


Assuntos
Potenciais de Ação/fisiologia , Canais Iônicos/metabolismo , Receptores Nicotínicos/metabolismo , Células de Renshaw/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Apamina/farmacologia , Vértebras Lombares , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/fisiologia , Neurotransmissores/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Células de Renshaw/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Raízes Nervosas Espinhais/fisiologia , Distribuição Tecidual
12.
Front Neural Circuits ; 7: 120, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23888129

RESUMO

Synchronization among neurons is thought to arise from the interplay between excitation and inhibition; however, the connectivity rules that contribute to synchronization are still unknown. We studied these issues in hippocampal CA1 microcircuits using paired patch clamp recordings and real time computing. By virtually connecting a model interneuron with two pyramidal cells (PCs), we were able to test the importance of connectivity in synchronizing pyramidal cell activity. Our results show that a circuit with a nonreciprocal connection between pyramidal cells and no feedback from PCs to the virtual interneuron produced the greatest level of synchronization and mutual information between PC spiking activity. Moreover, we investigated the role of intrinsic membrane properties contributing to synchronization where the application of a specific ion channel blocker, ZD7288 dramatically impaired PC synchronization. Additionally, background synaptic activity, in particular arising from NMDA receptors, has a large impact on the synchrony observed in the aforementioned circuit. Our results give new insights to the basic connection paradigms of microcircuits that lead to coordination and the formation of assemblies.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Células Piramidais/fisiologia
13.
Nat Neurosci ; 15(11): 1524-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23042082

RESUMO

The vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.


Assuntos
Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Proteínas de Fluorescência Verde , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/classificação , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Valina/análogos & derivados , Valina/farmacologia , Imagens com Corantes Sensíveis à Voltagem , Ácido gama-Aminobutírico/metabolismo
14.
Mol Cell Neurosci ; 49(3): 322-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22273508

RESUMO

Gamma motor neurons (MNs), the efferent component of the fusimotor system, regulate muscle spindle sensitivity. Muscle spindle sensory feedback is required for proprioception that includes sensing the relative position of neighboring body parts and appropriately adjust the employed strength in a movement. The lack of a single and specific genetic marker has long hampered functional and developmental studies of gamma MNs. Here we show that the serotonin receptor 1d (5-ht1d) is specifically expressed by gamma MNs and proprioceptive sensory neurons. Using mice expressing GFP driven by the 5-ht1d promotor, we performed whole-cell patch-clamp recordings of 5-ht1d::GFP⁺ and 5-ht1d::GFP⁻ motor neurons from young mice. Hierarchal clustering analysis revealed that gamma MNs have distinct electrophysiological properties intermediate to fast-like and slow-like alpha MNs. Moreover, mice lacking 5-ht1d displayed lower monosynaptic reflex amplitudes suggesting a reduced response to sensory stimulation in motor neurons. Interestingly, adult 5-ht1d knockout mice also displayed improved coordination skills on a beam-walking task, implying that reduced activation of MNs by Ia afferents during provoked movement tasks could reduce undesired exaggerated muscle output. In summary, we show that 5-ht1d is a novel marker for gamma MNs and that the 5-ht1d receptor is important for the ability of proprioceptive circuits to receive and relay accurate sensory information in developing and mature spinal cord motor circuits.


Assuntos
Retroalimentação Sensorial/fisiologia , Neurônios Motores gama/fisiologia , Fusos Musculares/fisiologia , Neurônios Aferentes/fisiologia , Receptor 5-HT1D de Serotonina/fisiologia , Animais , Camundongos , Camundongos Knockout , Neurônios Motores gama/citologia , Receptor 5-HT1D de Serotonina/análise , Serotonina/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia
15.
Eur J Neurosci ; 33(8): 1462-70, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21366727

RESUMO

We have previously shown that mice lateral superior olive (LSO) neurons exhibit a large hyperpolarization-activated current (I(h) ), and that hyperpolarization-activated cyclic-nucleotide-gated type 1 channels are present in both the soma and dendrites of these cells. Here we show that the dendritic I(h) in LSO neurons modulates the integration of multiple synaptic inputs. We tested the LSO neuron's ability to integrate synaptic inputs by evoking excitatory post-synaptic potentials (EPSPs) in conjunction with brief depolarizing current pulses (to simulate a second excitatory input) at different time delays. We compared LSO neurons with the native I(h) present in both the soma and dendrites (control) with LSO neurons without I(h) (blocked with ZD7288) and with LSO neurons with I(h) only present peri-somatically (ZD7288+ computer-simulated I(h) using a dynamic clamp). LSO neurons without I(h) had a wider time window for firing in response to inputs with short time separations. Simulated somatic I(h) (dynamic clamp) could not reverse this effect. Blocking I(h) also increased the summation of EPSPs elicited at both proximal and distal dendritic regions, and dramatically altered the integration of EPSPs and inhibitory post-synaptic potentials. The addition of simulated peri-somatic I(h) could not abolish a ZD7288-induced increase of responsiveness to widely separated excitatory inputs. Using a compartmental LSO model, we show that dendritic I(h) can reduce EPSP integration by locally decreasing the input resistance. Our results suggest a significant role for dendritic I(h) in LSO neurons, where the activation/deactivation of I(h) can alter the LSO response to synaptic inputs.


Assuntos
Dendritos/fisiologia , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Excitadores/fisiologia , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia , Sinapses/fisiologia , Animais , Cardiotônicos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Dendritos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Canais de Potássio/genética , Canais de Potássio/metabolismo , Pirimidinas/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
16.
Eur J Neurosci ; 32(10): 1658-67, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20946234

RESUMO

The auditory system provides a valuable experimental model to investigate the role of sensory activity in regulating neuronal membrane properties. In this study, we have investigated the role of activity directly by measuring changes in medial nucleus of the trapezoid body (MNTB) neurons in normal hearing mice subjected to 1-h sound stimulation. Broadband (4-12 kHz) chirps were used to activate MNTB neurons tonotopically restricted to the lateral MNTB, as confirmed by c-Fos-immunoreactivity. Following 1-h sound stimulation a substantial increase in Kv3.1b-immunoreactivity was measured in the lateral region of the MNTB, which lasted for 2 h before returning to control levels. Electrophysiological patch-clamp recordings in brainstem slices revealed an increase in high-threshold potassium currents in the lateral MNTB of sound-stimulated mice. Current-clamp and dynamic-clamp experiments showed that MNTB cells from the sound-stimulated mice were able to maintain briefer action potentials during high-frequency firing than cells from control mice. These results provide evidence that acoustically driven auditory activity can selectively regulate high-threshold potassium currents in the MNTB of normal hearing mice, likely due to an increased membrane expression of Kv3.1b channels.


Assuntos
Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Vias Auditivas/fisiologia , Tronco Encefálico/citologia , Neurônios Aferentes/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Masculino , Camundongos , Neurônios Aferentes/citologia , Técnicas de Patch-Clamp , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tetraetilamônio/metabolismo
17.
Eur J Neurosci ; 24(4): 1137-46, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16930439

RESUMO

Sodium currents are essential for action potential generation and propagation in most excitable cells. Appropriate tuning of these currents can be modulated both developmentally and in response to activity. Here we use a mouse model of congenital deafness (dn/dn- asymptomatic deafness associated with hair cell degeneration) to investigate the effect of lack of activity in the expression of Na(+) currents in neurons from the medial nucleus of the trapezoid body (MNTB). Patch-clamp recordings show that at postnatal day (P) 14, both normal and deaf mice display a significant amount of persistent and resurgent Na(+) currents. However, the persistent current is greater in deaf mice than in normal mice, and resurgent current kinetics are slower in deaf mice. At P7, resurgent currents are not present in either group. MNTB immunohistochemistry demonstrates that Nav1.1 subunits are expressed postsynaptically in both P14 normal and deaf mice, while postsynaptic Nav1.6 staining was only observed in deaf mice. Labelling of Nav1.6 subunits in different age groups revealed that at younger ages (P7), both normal and deaf mice express this protein. Nav1.6 staining was not observed in MNTB neurons of P28 normal mice, whereas it is maintained in deaf mice cells until much later (P28). At P7, none of the groups displayed resurgent currents (despite the detection of Nav1.6 subunits at this age group); this suggests that factors other than alpha subunits are important for modulating these currents in MNTB cells. Our results emphasize the importance of activity during development in regulating Na(+) channels.


Assuntos
Surdez , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Subunidades Proteicas/metabolismo , Canais de Sódio/metabolismo , Sódio/metabolismo , Potenciais de Ação/fisiologia , Animais , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Surdez/genética , Surdez/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Canal de Sódio Disparado por Voltagem NAV1.6 , Técnicas de Patch-Clamp
18.
J Physiol ; 576(Pt 3): 849-64, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16916913

RESUMO

The hyperpolarization-activated cation current (I(h)) may influence precise auditory processing by modulating resting membrane potential and cell excitability. We used electrophysiology and immunohistochemistry to investigate the properties of I(h) in three auditory brainstem nuclei in mice: the anteroventral cochlear nucleus (AVCN), the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO). I(h) amplitude varied considerably between these cell types, with the order of magnitude LSO > AVCN > MNTB. Kinetically, I(h) is faster in LSO neurons, and more active at rest, compared with AVCN and MNTB cells. The half-activation voltage is -10 mV more hyperpolarized for AVCN and MNTB cells compared with LSO neurons. HCN1 immunoreactivity strongly labelled AVCN and LSO neurons, while HCN2 staining was more diffuse in all nuclei. The HCN4 subunit displayed robust membrane staining in AVCN and MNTB cells but weak labelling of the LSO. We used a dynamic clamp, after blocking I(h), to reinsert I(h) to the different cell types. Our results indicate that the native I(h) for each cell type influences the resting membrane potential and can delay the generation of action potentials in response to injected current. Native I(h) increases rebound depolarizations following hyperpolarizations in all cell types, and increases the likelihood of rebound action potentials (particularly in multiple-firing LSO neurons). This systematic comparison shows that I(h) characteristics vary considerably between different brainstem nuclei, and that these differences significantly affect the response properties of cells within these nuclei.


Assuntos
Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Canais Iônicos/fisiologia , Potenciais da Membrana/fisiologia , Potenciais de Ação/fisiologia , Animais , Núcleos Anteriores do Tálamo/citologia , Núcleos Anteriores do Tálamo/fisiologia , Tronco Encefálico/citologia , Cianeto de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos CBA , Neurônios Aferentes/fisiologia , Núcleo Olivar/citologia , Núcleo Olivar/fisiologia , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...